Update Critical Care Medicine 2011

Roland Schein, MD
UM Miller School of Medicine
When it’s new?
When it’s “proven”?
When it’s “disproven”?
When it’s time to reconsider?

WHEN IS MEDICAL INFO WORTH TALKING ABOUT?
When Is a Given Medical Treatment “Proven”?

- When there is biological plausibility
 - Relevant lab, pre-clinical development
- When there is sufficient evidence of a meaningful clinical response to the treatment
 - Conduct of high quality clinical trials
Time Frame is Not Short Term

• Therapies may take years to establish
• Once unsuccessful therapies may become successful due to technical innovation
 – e.g. current PCI for acute coronary disease vs. initial reports of angioplasty
• Many therapies are
 – Best guesses based on incomplete information
 – Subject to therapeutic fashions
 – Most recently published/in media = most attention
Issues of Study Design Directly Effect What We “Know”...
<table>
<thead>
<tr>
<th>Desirable Clinical Endpoint</th>
<th>Surrogate Endpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Septic Shock study: Alive at some relevant time interval</td>
<td>• Septic Shock study: Time to shock reversal</td>
</tr>
<tr>
<td>• ARDS study: Home, off a ventilator</td>
<td>• ARDS study: Oxygenation</td>
</tr>
<tr>
<td>• CPR study: Good neurological function</td>
<td>• CPR study: Return of Spontaneous Circulation</td>
</tr>
</tbody>
</table>
How Hard Are You Looking?

≈How Many Subjects In Study
Sample Size: The Art of the Possible

Ideally
- Smaller predicted effects requiring larger sample sizes
- Estimate a biologically plausible effect size
- Or “Minimally Clinically Important Difference”

Real World
- Larger “predicted” effects permit smaller sample sizes
- Cost
- Time
- Likelihood of accrual
Suppose some clinical outcome occurs 35% of the time....

Subjects Required To “See” Various Differences

<table>
<thead>
<tr>
<th>Difference</th>
<th>Subjects Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5% Drop</td>
<td>11390</td>
</tr>
<tr>
<td>5% Drop</td>
<td>2834</td>
</tr>
<tr>
<td>7.5% Drop</td>
<td>1250</td>
</tr>
<tr>
<td>10% Drop</td>
<td>698</td>
</tr>
<tr>
<td>15% Drop</td>
<td>302</td>
</tr>
</tbody>
</table>
Major Journal Publication of Critical Care Randomized Controlled Treatment Trials: “Planned” vs. Actual Differences Between Groups

If no bias between expected and observed differences expect = above/below blue line

Most differences smaller than expected

Significant tended to have negative effect of treatment

Smaller than planned
For but positive treatment effects
The Point Being...

• A number of treatments may actually have been helpful but are lost because too few subjects are enrolled
 – For treatments remaining accessible, clinical judgment is required.
 – Novel therapeutic agents typically disappear.
 – Ethical issues for those participating/designing trials
 – Resource allocation issues
We’re Always Looking For “Breakthroughs”
But really, in any given year, we see

- “Settling” of old issues as enough evidence accumulates
 - Which vasopressor?
- Need to recalibrate treatments, behaviors because of unexpected results
 - “tight” glucose control
 - Development of “guidelines”
- Rejection of some new approaches
 - TLR4 blocker
- Cause for optimism in new ideas, not yet subjected to full scrutiny
 - Endotoxin binding filters
 - Talactoferrin
“Settling” old business...
Which Pressor? Probably Norepinephrine

• In fluid resuscitated septic shock:
 – Higher response rate, more rapid response in crossover study
 – Less splanchnic or renal ischemia than dopamine, epinephrine
 – Less lactic acidosis than epinephrine
 – Now “no difference” study noerepi/dobutamine vs. epinephrine
 • Small study
 • NE/Dobutamine : Epi :: 34% mortality: 40% mortality (28 days)
 – Less tachycardia than dopamine
Norepinephrine vs. Epinephrine: 280 Shock Patients

No difference in % or time to reach MAP goal

Myburgh et al Intensive Care Med, 2008
Norepinephrine vs. Epinephrine: Outcomes

• No difference in survival
• Increased drop out in NE group for lactic acidosis + tachycardia
Dopamine vs. Norepinephrine for Shock

• 1679 Patients:
 – ICU
 – Shock
 • After fluids: MAP < 70 or SBP < 100
 • Hypoperfusion
 – Oliguria
 – AMS
 – Mottled skin
 – Lactate

■ Treatment to target BP or open label if still in shock:
 ■ Dopamine:
 ■ 2-20 mcg/kg/min
 ■ Norepinephrine:
 ■ 0.02-0.19 mcg/kg/min

Dopamine vs. Norepinephrine for Shock: Etiology of Shock

Dopamine vs. Norepinephrine for Shock: Outcome

Dopamine vs. Norepinephrine for Shock: Outcome

<table>
<thead>
<tr>
<th>Period</th>
<th>% Mortality</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dopa</td>
<td>Norepi</td>
</tr>
<tr>
<td>ICU</td>
<td>50.2</td>
<td>45.9</td>
</tr>
<tr>
<td>Hospital</td>
<td>59.4</td>
<td>56.6</td>
</tr>
<tr>
<td>28 Days</td>
<td>52.5</td>
<td>48.5</td>
</tr>
<tr>
<td>6 Months</td>
<td>63.8</td>
<td>62.9</td>
</tr>
<tr>
<td>12 Months</td>
<td>65.9</td>
<td>63.0</td>
</tr>
</tbody>
</table>

Dopamine vs. Norepinephrine for Shock: Adverse Events

<table>
<thead>
<tr>
<th></th>
<th>Dopamine</th>
<th>Norepinephrine</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days w/o Vasopressors</td>
<td>11</td>
<td>12.5</td>
<td>Y (0.01)</td>
</tr>
<tr>
<td>Days w/o Ventilator</td>
<td>8.5</td>
<td>9.5</td>
<td>N (0.13)</td>
</tr>
<tr>
<td>Days w/o Renal Support</td>
<td>12.8</td>
<td>14</td>
<td>N (0.07)</td>
</tr>
<tr>
<td>LOS</td>
<td>=</td>
<td>=</td>
<td>N</td>
</tr>
<tr>
<td>Arrhythmias</td>
<td>24%</td>
<td>12%</td>
<td>Y (0.001)</td>
</tr>
<tr>
<td>Skin ischemia</td>
<td>6.5%</td>
<td>4%</td>
<td>N (0.09)</td>
</tr>
</tbody>
</table>

Dopamine vs. Norepinephrine for Shock: Subgroup

What About Vasopressin?

- Septic shock associated with
 - Low vasopressin levels
 - Down regulated vasopressin receptors
- Vasopressin (in low dose) dilates arteries
 - Renal
 - Pulmonary
 - Coronary
 - Cerebral
- OTOH, Vasopressin has been associated with
 - Intestinal ischemia
 - Skin necrosis
 - Cardiac arrest
VASST Study:

• 779 septic shock patients on > 5mcg/min levophed X 6 hrs + ≥ 1 organ failure
 – Vasopressin 0.03U/min or Norepinephrine 15 mcg/min
 – Open label vasopressors weaned by protocol
 – Outcome 28 day mortality
 • Stratified by severity of shock

Russell, JA et al NEJM 2008; 358:877-87
VASST Results

<table>
<thead>
<tr>
<th></th>
<th>Vasopressin (% mortality)</th>
<th>Norepinephrine (% mortality)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 day Mortality (all)</td>
<td>35.4</td>
<td>39.3</td>
</tr>
<tr>
<td>90 Day Mortality</td>
<td>43.9</td>
<td>49.6</td>
</tr>
<tr>
<td>“Less Severe” Shock (<15 mcg/min)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28 Days</td>
<td>26.5*</td>
<td>35.7*</td>
</tr>
<tr>
<td>90 Days</td>
<td>35.8*</td>
<td>46.1*</td>
</tr>
</tbody>
</table>

Vasopressin use led to reduction in norepinephrine dosage, no change in organ dysfunctions. Digital ischemia more likely in vasopressin group (.06), cardiac arrest in norepinephrine group (.11)
Vasopressors: Tilt in favor of Norepinephrine

- No Knockout but maybe TKO in competition vs.
 - Dopamine
 - Norepinephrine

- Utility of vasopressin less clear:
 - ? Additive
 - Non-US use for “treating the vasoplegia” of shock
 - ? Reduce fluid requirements
Rethinking treatments and processes...
Improving Medical Care

Evidence → Guidelines, Bundles → Better Care → Better Outcomes
Natural Conflict in Implementation

• Need to Implement
 – Help patients
 – Act despite uncertainty
 – Generate “quality improvement” data

• Need to Accrue Sufficient information
 – Avoid harm
 – Avoid wasting energy/resources
Intensive Glucose Control
Single Center, 1548 mostly CV Surgery Patients

Pivotal interventional trial of a primarily cardiothoracic ICU population.

Insulin Use: 99% vs 39%

AM Glucose: 103 vs 153

\[P = 0.01 \]

Van den Berghe, NEJM 2001
Intensive Glucose Control

Effects of Introducing a Tight Control Protocol

Mean Glucose: 152 mg/dL \Rightarrow 131 mg/dL

Krinsley, Mayo Clin Proc, 2004
2nd Generation Multi-Center Studies

• Glucontrol*
 – Europe, Israel
 • Tight Control 8.6% hypoglycemia vs 2.4% (sig)
 • Tight Control 17% mortality vs. 15% (not sig)

• NICE-Sugar**
 – Australia, New Zealand, Canada, (US)
 • Tight Control 6.8% hypoglycemia vs. 0.5% (sig)
 • Tight Control 27.5 mortality vs. 24.9 (sig)

•Preiser, Intensive Care Medicine 2009
•** NICE-Sugar Invest., NEJM 2009
NICE-Sugar Outcomes

- Graph shows probability of survival over days after randomization for conventional and intensive glucose control groups.
- Table compares subgroups:
 - Operative admission
 - Diabetes
 - Severe sepsis
 - Trauma
 - APACHE II score
 - Corticosteroids
- Odds ratios and 95% confidence intervals for death are provided for each subgroup.
- P-values for heterogeneity are included.
Cautionary Tale: Tight Glucose Control

2001
Single Center Study: Tight Glucose Control Saves Lives

2003-2010
Adoption of “tight” regimens in guidelines, bundles and ICU protocols

2004-2006
Pre/post study
Tight glucose control saves lives

2010-2011
Multicenter Studies: Tight Glucose Control harmful
Tight Glucose Control Lessons

• Adoption based on not generalizable info
 – Single center
 – Unique management, limited population
• Expectation of unreasonably large benefit
• Inability to deliver the intervention safely
 – Lack of benefit associated with hypoglycemic events
This Does Not Mean Let Glucoses Soar

• Recalibrate expectations of magnitude of benefit
• Slow down.
• Treat glucose to 140 range
 – Don’t go back to bad old days
• Try to identify groups most likely to benefit
 – Surgical
• Innovate to prevent hypoglycemia
Infectious Disease Society (IDSA): Quality of Evidence for Guidelines

All Guidelines

Guidelines By Date

- Management of intravascular catheter-related bloodstream infections
- Candidiasis
- Aspergillosis
- Intra-abdominal infections
- Cryptococcal disease
IDSA Hospital Acquired Pneumonia Guidelines

• IDSA/ATS recommendations for treatment of hospital acquired pneumonia

• Multidrug resistant organism risk:
 – Late onset ventilator associated pneumonia
 – Immunosuppression
 – Chronic HD
 – Home infusion or wound care
 – Other

• Pts at risk of multi-drug resistant organisms:
 – an anti-pseudomonal cephalosporin, carbapenem, or β-lactam and β-lactamase inhibitor
 – aminoglycoside or antipseudomonal fluoroquinolone
 – linezolid or vancomycin
IMPACT-HAP

• Improving Medicine through Pathway Assessment of Critical Therapy in Hospital-Acquired Pneumonia (IMPACT-HAP).

• Improve guideline compliance in 4 academic medical centers
 – Development of an antibiotic algorithm
 – Education for MD, RN, Pharmacy staff

• Assess relationship of guideline adherence to outcome
Outcome IMPACT-HAP

- Compliance increased from 33% -> 47% over study
- 174/303 Non-compliant
 - 154 no 2nd Gram –
 - 24 no 1st Gram –
 - 24 no Gram +
- Mortality
 - 35% Compliant
 - 21% Non-compliant
- No correction for any clinical data changed the finding
Outcomes IMPACT-HAP

• Why?
 – Additional Gram negative may not help
 • 1 controlled study, several meta-analyses concur
 – Aminoglycosides, colistin toxic?
 – Local physician judgment superior to guideline?

• What next?
 – IDSA reviewing guidelines
 – Randomized trial?
Detection of “Failure” can be an indication that our system is self-correcting, though not as fast as I would like

- Bundles/Guidelines need to be continually tested and reviewed
- Our enthusiasms are double-edged swords
 - Pushing care forward
 - Blinding us to contradictory information

So, let’s be careful out there..
New treatments??
Other Possible Interventions

• Endotoxin and TLR-4 blockade
 – Hemofiltration
 • Early outcome data
 – Medication Eritoran
 • Phase 3 completed/not officially reported
Endotoxin/Receptors as Pharmacologic Target

– LPS levels correlate with
 • shock,
 • gut hypoperfusion,
 • adverse outcomes in human sepsis
 • Gram -/+ and Fungal pathogens

– Upstream point of sepsis cascade

– Strategies in Clinical Trials
 • Polymixin Hemoperfusion
 • E5564 aka Eritoran
 – Lipid A-like structure blocks signaling at MD2/TLR 4
Polymyxin Hemoperfusion

- Used in Japan x years despite no clinical trials (made in Japan)
- Does absorb endotoxin
- Endotoxin levels elevated in many types of sepsis
Early Use of Polymyxin B Hemoperfusion in Abdominal Sepsis [EUPHAS]

- 10 Italian ICU’s over 3 years
- Emergency Abdo Surgery + Sepsis
- “Standard Care” or Standard + 2 2hr hemofilter sessions

Cruz et al, JAMA 2009
EUPHAS Outcome

Survival Proportion

Log-rank $P = .03$

Time, d

<table>
<thead>
<tr>
<th>Time, d</th>
<th>Polymyxin B hemoperfusion therapy</th>
<th>Conventional therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>34</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>34</td>
<td>22</td>
</tr>
<tr>
<td>10</td>
<td>32</td>
<td>19</td>
</tr>
<tr>
<td>15</td>
<td>30</td>
<td>15</td>
</tr>
<tr>
<td>20</td>
<td>27</td>
<td>15</td>
</tr>
<tr>
<td>25</td>
<td>22</td>
<td>12</td>
</tr>
<tr>
<td>30</td>
<td>18</td>
<td>11</td>
</tr>
</tbody>
</table>
EUPHAS Issues

• Trial stopped for “ethical” reasons?!?!?!
• Designed to detect hemodynamic changes
 – Modest effect of hemoperfusion
• Very low enrollment, accrual rates
 – Small studies very subject to influence by minimal number of events
 – Uncertain applicability
• Placebo mortality much higher than anticipated. Treatment group mortality about anticipated.
• Larger, randomized trial in progress now.
- Short fatty acids, unsaturated 18 carbon fatty acid, and absence of dodecanoic acid leads to the antagonistic properties of E5564
- C.3 and C.3' ether linkages and methyl group at C.6' site confers stability
1900 Patients with severe sepsis
Randomized to standard tx+ placebo or standard tx+ eritoran
Able to “see” about 6% drop

ACCESS TRIAL
A CONTROLLED COMPARISON OF ERITORAN AND PLACEBO IN PATIENTS WITH SEVERE SEPSIS
28-day mortality

<table>
<thead>
<tr>
<th></th>
<th>Placebo</th>
<th>Eritoran</th>
</tr>
</thead>
<tbody>
<tr>
<td>MITT population</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>657</td>
<td>1304</td>
</tr>
<tr>
<td>Mortality (Dead or Unknown)</td>
<td>26.9%</td>
<td>28.1%</td>
</tr>
<tr>
<td>P value vs Placebo</td>
<td>--</td>
<td>0.5986</td>
</tr>
<tr>
<td>Per Protocol population</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>584</td>
<td>1176</td>
</tr>
<tr>
<td>Mortality (Dead or Unknown)</td>
<td>25.0%</td>
<td>27.0%</td>
</tr>
<tr>
<td>P value vs Placebo</td>
<td>--</td>
<td>0.3802</td>
</tr>
<tr>
<td>Japanese population (MITT)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>52</td>
<td>80</td>
</tr>
<tr>
<td>Mortality (Dead or Unknown)</td>
<td>23.1%</td>
<td>15.0%</td>
</tr>
<tr>
<td>P value vs Placebo</td>
<td>--</td>
<td>0.2398</td>
</tr>
</tbody>
</table>
1-year mortality (Secondary endpoint)

Log-Rank Test p-value: 0.7924
Hazard Ratio (95% CI): 0.98 (0.85, 1.13)
Talactoferrin

• Analog of Lactoferrin
 – Phase 2 sepsis trial 190 patients
 • Approx 65% with Cardiovascular dysfunction

• Dendritic cell recruiter
Oral Talactoferrin’s Effects are Mediated through the Gut

Where 75% of Immune System Resides

Action on GI Tract
- Binds epithelial cells and modulates intra-cellular signaling pathways impacting cytokine secretion
- Increases levels of key chemokines (e.g., CCL20) and cytokines (e.g., IFN-γ) derived from the GI tract
- Decreases production of Th2 cytokines (IL-4, IL-6, IL-10)

Systemic Consequences
- Decreases GI tract-induced systemic pro-inflammatory cytokine surges that contribute to the systemic multi-organ damage in sepsis
- Normalizes GI permeability and decreases bacterial translocation across the gut
- Minimizes the increase in circulating neutrophils in response to inflammation
Lactoferrin LF11 Peptide Bound to LPS

- Cationic LPS binding protein
 - competes for LPS with LBP, CD14
- Fe$^{2+}$ chelator,
 - limits oxidant tissue injury
- Bacteriostatic
- Promotes neutrophil binding and activity
- Promotes efficient antigen presentation and clearance by GALT

Phase II Trial of Talactoferrin in Patients with Severe Sepsis

190 patients*, severe sepsis <24 hours

- Standard Care + Talactoferrin 1.5 gm tid up to 28 days (n= 96)
- Standard Care + placebo tid up to 28 days (n= 94)

28-Day All Cause Mortality

*194 patients enrolled, 190 treated
Primary Endpoint: 28-Day All-Cause Mortality

28-Day All-Cause Mortality (%)

<table>
<thead>
<tr>
<th></th>
<th>Placebo</th>
<th>Talactoferrin</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-Day All-Cause Mortality (%)</td>
<td>26.6%</td>
<td>14.6%</td>
</tr>
</tbody>
</table>

- **Absolute reduction**: 12%
- **Relative reduction**: 45%

Odds-ratio and p-values

<table>
<thead>
<tr>
<th></th>
<th>Univariate</th>
<th>Adjusted*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odds-ratio</td>
<td>0.47</td>
<td>0.49</td>
</tr>
<tr>
<td>p-value (1-tail)</td>
<td>0.02</td>
<td><0.03</td>
</tr>
<tr>
<td>p-value (2-tail)</td>
<td>0.04</td>
<td>0.06</td>
</tr>
</tbody>
</table>

adjusted for CV dysfunction
28-Day All-Cause Mortality by CV Status

With CV Dysfunction
- Placebo: 28.6% (n = 121)
- Talactoferrin: 22.4%

No CV Dysfunction
- Placebo: 22.6% (n = 69)
- Talactoferrin: 2.6%

<table>
<thead>
<tr>
<th>Group</th>
<th>Placebo</th>
<th>Talactoferrin</th>
<th>Odds-ratio</th>
<th>p-value (2-tail)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV Dysfunction</td>
<td>28.6%</td>
<td>22.4%</td>
<td>0.72</td>
<td>0.44</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No CV Dysfunction</td>
<td>22.6%</td>
<td>2.6%</td>
<td>0.09</td>
<td>0.03</td>
</tr>
</tbody>
</table>
Talactoferrin

• Talactoferrin early results encouraging
 – Phase 2 sepsis
 – 1 Pediatric trial necrotizing enterocolitis
 – Early Phase Oncology development

• Uncertainty
 – Very large effect in pt’s without shock?
 – Big randomization problem
 • 22 Subjects received active drug + placebo!!!!

• Phase 3 Study in start-up phase
For the moment,

Talactoferrin:

When it comes to infection, listen to your mom!
Conclusions (1)

• Numerous trials in critical care continue to refine our understanding of how to treat patients

• Information must be understood in the context of
 – Limitations of the endpoints we choose to follow
 – The size of effects we can see with < ideal sample sizes
 – “ABSENCE OF PROOF ≠ PROOF OF ABSENCE”

• Innovative trial design will minimize these problems
Conclusions (2)

- Norepinephrine best “default” vasopressor for shock
- Role of vasopressin supportive rather than starring
- “Tight” glucose control on the back burner
- TLR4 blocker (E5564) pretty convincingly ineffective for severe sepsis
- Guidelines/Bundles need to be continually tested
- Anticipate results
 - Talactoferrin
 - Filtration for sepsis
 - Corticosteroids for severe CAP
 - 2 large early goal directed therapy sepsis trials
 - Many more to come!!!