The Sunshine Vitamin: Vitamin D and CV Disease
Hype or New Hope?

Jeffrey L Anderson, MD

Hormone: derived from cholesterol
1. Requires ≥ 2 tissues/organs to be activated
2. Works systemically on multiple tissues/organs
3. Changes gene expression
4. Vit D receptors in multiple organs

Vitamin D:
* Skin, Liver, Kidney
* Muscles, Bones, Heart, Brain, Vessels, Kidneys, etc
> 2,000 genes
Selected Nonskeletal Functions of Vitamin D

25(OH)D:
- Metabolic storage form of Vit D
- Principal circulating form of Vit D
- Generally accepted as best measure of total body Vit D stores
- Commonly measured in serum or plasma to assess Vit D status

1,25(OH)2D:
- Active form of Vit D
- Activated from 25(OH)D in the kidney
- Regulates parathyroid hormone
Defining Vitamin D Deficiency

- ≤ 10 ng/ml: Severely Deficient
- 10 to 20 ng/ml: Moderately Deficient
- 20 to 30 ng/ml: Mildly Deficient? Adequate?
- ≥ 30 ng/ml: Sufficient
- 40 to 60 ng/ml: Ideal (?)
- > 150 ng/ml: Toxic

Parathyroid hormone begins to rise at Vit D levels < 20-25 ng/ml
Vitamin D Deficiency Epidemic

Adolescents 24% Arch Ped Adol Med 2004; 158:531
Young Adults 32% Am J Med 2002; 112:659
IM Residents 51% Calcf Tissues Int 2005; 76(1):11
NHANES Survey 25-57% Bone 2002; 30:771
Hospital Pts 57% NEJM 1998; 338:777
IMC Patients 63% Am J Cardiol 2010; 106:963
Critically ill 93% NEJM 2009; 360:1912
Nursing Home Pts 90%
Worldwide 25-90%: >1-2 billion people

Reasons for Increased Risk of Vitamin D Deficiency

- INDOOR LIFESTYLE & SUN AVOIDANCE
- SUN PROTECTION (SUNSCREEN, CLOTHING)
- DARKER SKIN AND HIGH LATITUDES
 - AGING POPULATION
- DECREASED MILK CONSUMPTION
- OBESITY AND DIABETES

Vitamin D Disease Associations

- Bone/muscle: Osteoporosis, myalgias
- Cancers
 - Colorectal
 - Breast
 - Prostate
- Chronic kidney disease
- Types 1 and 2 Diabetes
- Hypertension
- Obesity
- Rheumatoid arthritis
- Multiple sclerosis
- Depression, cognitive impairment
- Cardiovascular disease risk
Proposed CV Risk Mechanisms

Vitamin D Deficiency
- Insulin Resistance
- Pancreatic Beta Cell Dysfunction
- Inflammation
- PAAS
- Diabetic and Metabolic Syndrome
- Atherosclerosis
- Advanced Cardiovascular Events
- Hyperension and Hypertrophy

25D Deficiency Increased Mortality in Dialysis Patients

90-Day Mortality by 25D Levels

<table>
<thead>
<tr>
<th>25-hydroxyvitamin D (ng/mL)</th>
<th>All-Cause</th>
<th>CV Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td><10</td>
<td>A</td>
<td>R</td>
</tr>
<tr>
<td>10-20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*P<0.05 vs no active vitamin D therapy; Reference group: n=634.
25-Hydroxyvitamin D and Risk of Myocardial Infarction in Men
A Prospective Study

Edward Giovannucci, MD, ScD, Yan Lu, MS, Bruce W. Holub, MD, PhD, Eric B. Rimm, ScD

Arch Intern Med. 2008;168(11):1174-1180

Background: In cross-sectional studies, low serum levels of 25-hydroxyvitamin D are associated with higher prevalence of cardiovascular risk factors and outcomes. This study aimed to determine whether prospective, 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D levels are related to all-cause and cardiovascular mortality.

Methods: Prospective cohort study of 3228 consecutive male and female volunteers, mean age 42±11 years, scheduled for coronary angiography at a single tertiary center. We measured serum levels of 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D levels within each month of blood drawings. The main outcome measures were all-cause and cardiovascular deaths.

Results: During a median follow-up period of 7.7 years, 377 patients (11%) died, including 196 deaths from cardiovascular causes. Multivariate-adjusted hazards ratios (HRs) for patients in the lowest tertile of 25-hydroxyvitamin D tertile and 1,25-dihydroxyvitamin D tertile were 1.37 (95% confidence interval [CI], 1.06-1.77) and 1.21 (95% CI, 1.00-1.46) for all-cause mortality and 1.36 (95% CI, 1.06-1.75) and 1.26 (95% CI, 1.03-1.54) for cardiovascular mortality (HRs, 2.09, 95% CI, 1.60-1.70, and HR, 1.36, 95% CI, 1.03-1.80, respectively) and for cardiovascular mortality (HR, 2.22, 95% CI, 1.57-3.13, and HR, 1.40, 95% CI, 1.27-1.59, respectively) compared with patients in the highest tertile of 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D levels.

Conclusions: Low 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D levels are independently associated with all-cause and cardiovascular mortality. A causal relationship has yet to be proven by interventional studies.
Kaplan-Meier Plots Of All-cause and Cardiovascular Mortality In the 25-Hydroxyvitamin D Quartiles

IHC Vitamin D Observational Study

- Prospective analysis of patient data within Intermountain Healthcare
- Included 41,497 patients in whom at least one serum vitamin D level was obtained
- Vit D levels were drawn at the providers’ discretion for the usual indications (osteoporosis etc.)
- Vit D >30 in 36%; 16-30 in 47%; <=15 in 17%

Anderson J. Am J Cardiol 2010; 106:963
Vitamin D and CV Risk Factor Prevalence at Baseline

Vitamin D Levels
- >30 ng/ml
- 16-30 ng/ml
- <=15 ng/ml

Percent

*P-trend <0.0001

Vitamin D and Risk for Incidence (New Development) Of CV Risk Factors

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Very Low (<=15) vs Normal</th>
<th>Low (16-30) vs Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypertension</td>
<td>HR*=1.62, p<0.0001</td>
<td>HR=1.18, p=0.005</td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td>HR=1.27, p=0.003</td>
<td>HR=1.10, p=0.12</td>
</tr>
<tr>
<td>Diabetes</td>
<td>HR=1.89, p<0.0001</td>
<td>HR=1.32, p=0.001</td>
</tr>
<tr>
<td>PVD</td>
<td>HR=1.40, p=0.04</td>
<td>HR=1.01, p=0.93</td>
</tr>
</tbody>
</table>

*HR=adjusted hazard ratios.

Anderson J. Am J Cardiol 2010; 106:963
Vit D and Risk for Incident CV Outcomes

<table>
<thead>
<tr>
<th>Outcomes (pts >50 yrs)</th>
<th>≤15 vs. >30 (ref)</th>
<th>16-30 vs. >30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death (n=27,686)</td>
<td>HR=1.77, p<0.0001</td>
<td>HR=1.20, p=0.009</td>
</tr>
<tr>
<td>CAD/MI (n=21,853)</td>
<td>HR=1.45, p<0.0001</td>
<td>HR=1.15, p=0.09</td>
</tr>
<tr>
<td>CHF (n=23,793)</td>
<td>HR=2.01, p<0.0001</td>
<td>HR=1.31, p=0.005</td>
</tr>
<tr>
<td>CVA (n=26,025)</td>
<td>HR=1.78, p=0.004</td>
<td>HR=1.31, p=0.11</td>
</tr>
<tr>
<td>AFib (n=24,565)</td>
<td>HR=1.02, p=0.87</td>
<td>HR=0.95, p=0.61</td>
</tr>
</tbody>
</table>

*insufficient events for analysis

Intermountain Healthcare Cohort: Vitamin D and Risk of Mortality

Vitamin D and CVD Risk in NHANES

Prevalence of Hypovitaminosis D in Cardiovascular Diseases (from the National Health and Nutrition Examination Survey 2001 to 2004)

Doe Hyun Kim, MD, MPHa, Saimik Sabour, MD, PhDa, Upal N. Seng, MDb, Suzanne Adams, RN, MPHa and David J. Whelton, MD, MHSa, b

This cross-sectional study examined the burden of cardiovascular diseases (CVDs) using serum 25-hydroxyvitamin D (25(OH)D) and prevalence of hypovitaminosis D in adults with CVDs using data from NHANES 2001 to 2004. Serum 25(OH)D levels were divided into 3 categories (<20, 20 to 29, and ≥30 ng/mL), and hypovitaminosis D was defined as vitamin D <20 ng/mL. Of 8,351 adults who had 25(OH)D measured, mean 25(OH)D was 24.4 ng/mL, and the prevalence of hypovitaminosis D was 14%. The burden of CVDs increased with lower 25(OH)D categories, with 5.3%, 6.5%, and 9.3% coronary heart disease; 1.5%, 2.0%, and 3.5% heart failure; 2.9%, 3.8%, and 5.2% stroke; and 3.4%, 3.6%, and 7.7% peripheral arterial disease. Across all CVDs, hypovitaminosis D was more common in blacks than Hispanics or whites. Compared with persons at low risk for CVDs (68%), it was more prevalent in those at high risk (75%): odds ratio (OR) 1.32, 95% confidence interval (CI) 1.05 to 1.67, with coronary heart disease (OR 1.48, 95% CI 1.14 to 1.91), and both coronary heart disease and heart failure (OR 1.52, 95% CI 1.06 to 2.16) after controlling for age, race, and gender. In conclusion, hypovitaminosis D was highly prevalent in US adults with CVDs, particularly those with both coronary heart disease and heart failure. © 2009 Elsevier Inc. All rights reserved. (Am J Cardiol 2008;102:2049–2054)

Vit D Deficiency is Associated with Incident CVD in Framingham Offspring Study

Lower 25-OH Vitamin D Levels Associated With Higher Risk for CV Events

![Graph showing cumulative probability of CVD with lower 25(OH)D levels in hypertensive patients and normal blood pressure groups.](image-url)
Can Vitamin D Supplementation Reduce Cardiovascular Risk?

Why Vitamin D if Not A, B, C, or E*?

- Axiom of Essential Nutrients
 - Repleting a deficiency predictably confers benefits
 - Supplementing a normal level to supra-physiologic range results in neutral to harmful effects

*Or Folic Acid, or Hormone Replacement Therapy?
Vitamin D Therapy Associated With a Survival Advantage in Dialysis Patients

Data From the Fresenius Dialysis Database

- **2-Year Mortality Per 100 Person-Years**
 - IV vitamin D: 28.6
 - No IV vitamin D: 13.8
 - p<0.001

Design
- Historical cohort study
- n=37,173 patients treated with intravenous (IV) vitamin D compounds
- n=13,864 patients received no IV vitamin D

Results
- Adjusted 2-year survival advantage of 20% observed for IV vitamin D use
- Benefits observed even in patients with low PTH and elevated phosphorus and calcium

Intake of Vitamin D Associated With Decreased Total Mortality

Meta-Analysis of All Cause Mortality in 9 Randomized Controlled Clinical Trials in Which Patients Received Vitamin D or Control

<table>
<thead>
<tr>
<th>Study</th>
<th>No. of Deaths</th>
<th>No. of Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervention Group</td>
<td></td>
<td>Control Group</td>
</tr>
<tr>
<td>Chapuy, et al. (1992)</td>
<td>250/1134</td>
<td>216/1061</td>
</tr>
<tr>
<td>Lysniak, et al. (1994)</td>
<td>223/1294</td>
<td>218/1297</td>
</tr>
<tr>
<td>Chapuy, et al. (2005)</td>
<td>71/703</td>
<td>45/100</td>
</tr>
<tr>
<td>Moure, et al. (2002)</td>
<td>491/567</td>
<td>163/31</td>
</tr>
<tr>
<td>Freed, et al. (2003)</td>
<td>244/1345</td>
<td>244/1341</td>
</tr>
<tr>
<td>Portales, et al. (2005)</td>
<td>57/1321</td>
<td>58/1003</td>
</tr>
<tr>
<td>Grant, et al. (2005)</td>
<td>443/2940</td>
<td>443/2943</td>
</tr>
<tr>
<td>Pickard, et al. (2004)</td>
<td>753/12</td>
<td>353/83</td>
</tr>
<tr>
<td>Jackson, et al. (2005)</td>
<td>744/1070</td>
<td>507/1010</td>
</tr>
</tbody>
</table>

Summary Relative Risk (95% CI)

Summary relative risk: 0.67 (0.56-0.80); CI: confidence interval.

Vitamin D Therapy and CV Risk:
Intermountain Healthcare Study

- 7,515 patients (>18 yrs) with a low (<30) initial Vitamin D level
 - Follow-up vitamin D level obtained at least 1 year prior to the censor date (3/25/2010)
 - The last follow-up level used was either the first level where the vitamin D level was normalized (>30) or the last level obtained.
- Patients stratified by follow-up Vitamin D level
 - Vitamin D ≥ 30 ng/mL
 - Vitamin D <30 ng/mL
- Patients followed long-term (av 2.5 years, max 5.5 years)
- Cox regression adjusted for death, new diagnosis of coronary artery disease (CAD), myocardial infarction (MI), heart failure (HF), stroke, and renal failure.

Bair T, Muhlestein JB,…Anderson JL. JACC 2010; 55:A59
Effect of Normalizing Vitamin D on Composite Endpoint

Effect of Normalizing Vitamin D on Renal Failure

P<0.0001
VITAL: A Randomized Intervention Trial

- A Vitamin D and Omega-3 Trial
- 20,000 participants, launched Jan 2010
 - Males ≥60 years
 - Females ≥65 years
 - No history of heart disease or cancer
 - Not taking major vitamin D (>800 U/d) or calcium (>1,200 mg/d) supplements

- Doses:
 - Vitamin D: 2000 U/d vs placebo
 - Omega-3 fatty acid: 1 g/d vs placebo

- Coordinating Center: Harvard/BWH
- Funding: NIH

Pending Prospective Trials, Empiric Therapy?
OR
Screen, Supplement to Target?
Recent Institute of Medicine Recommendations

Doses recommended to achieve adequate 25-OH Vitamin D Blood Levels:

<table>
<thead>
<tr>
<th>Dose</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>600 IU Daily</td>
<td>≤ 70 years old</td>
</tr>
<tr>
<td>800 IU Daily</td>
<td>> 70 years old</td>
</tr>
</tbody>
</table>

Vitamin D: Who Should be Screened?

?Everyone except lifeguards who don’t wear sunscreen?

Courtesy of J O’Keefe
Groups Susceptible to Vit D Deficiency That May be Considered for Screening

- Darker Skin
- Over age 50 with other indications
- Bone, muscle disease/complaints; statin myalgias, fibromyalgia, etc.
- Hypertension, CV disease, heart failure
- Hospital, other health care settings
- Infections, autoimmune diseases
- Obesity, diabetes
- Indoor lifestyle, sun avoidance
- Neuro-degenerative diseases
- Kidney disease

Cost of 25-OH Vitamin D Assay

- Most commonly ordered “esoteric test”
- Typical outpatient lab charge = $50 to $150
- Medicare reimbursement = $43—but now limited to classical indications (not CV risk)
- On-line order (e.g. LEF.com) = $35
- Mayo Clinic wholesale = $22
Medicare ICD-9 Diagnosis Codes that Cover Vitamin D Blood Test

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>ICD-9 Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myalgias (unspecified)</td>
<td>729.1</td>
</tr>
<tr>
<td>Renal Insufficiency</td>
<td>593.9</td>
</tr>
<tr>
<td>Vitamin D Deficiency</td>
<td>268.9</td>
</tr>
<tr>
<td>Osteoporosis (unspecified)</td>
<td>733.00</td>
</tr>
<tr>
<td>Disorder of Bone and Cartilage (unspecified)</td>
<td>733.90</td>
</tr>
</tbody>
</table>

Fasting is not required.

Supplementing Vitamin D

- **Goal:** 25(OH)D level of >20 – 30 (up to 50?) ng/ml
- **Available Supplements**
 - Vitamin D2 (ergocalciferol) – Plant based form
 - Vitamin D3 (cholecalciferol) – Animal based form
 - Generally preferred form
- **Current IOM Recommended Daily Allowance**
 - 600 IU/day for age <=70
 - 800 IU/day for age >70
- **Treatment of Deficiency**
 - Vitamin D3: 5,000 IU daily for 8-16 weeks
- **Maintenance After Repletion**
 - Vitamin D3: begin with 1,000-2,000 IU daily
What is Ideal Range and Can Too Much Vitamin D Be Harmful?

- IOM review suggests that >20 ng/ml (rather than >30) may be adequate for bone (and other) health.
- “U” shaped concentration-response curve suggested for some cancers (e.g., pancreatic) with upswing beginning as low as >50 ng/ml.
- Evidence of pro-inflammatory response as evidenced by increases in C-reactive protein at high (>50 ng/ml) as well as low (<20 ng/ml) levels suggested in recent research.
- In our database, suggestion of increased risk of atrial fibrillation at high concentrations (>100 mg/ml).

Conclusions

- Vitamin D is a hormone that acts on receptors in multiple tissues and organs.
- Vit D originates primarily by synthesis in the skin in response to sun exposure, and deficiency is a common consequence of our modern lifestyle in the general population and in CV patients.
- Growing evidence associates Vit D deficiency with CV risk factors and incident CV disease.
- Observational evidence supports the use of Vit D supplementation in deficient patients to reduce CV risk, but randomized trials are needed.
- Currently, either an empiric approach to lifestyle and supplementation or selected screening and treatment to target may be considered.
So, Vit-D Hope or Hype?

Probably some of each!
Stay tuned.
Final answers pending.